

HEIDENHAIN

Length Gauges

05/2021

Contents

Length gauges from HEIDENHAIN

provide high accuracy over long measuring ranges. They are also robust and practical. They can be used in a wide range of applications, including production metrology, multi-gauging fixtures, measuring equipment monitoring, and position measurement.

This brochure supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the brochure edition valid when the order is placed.

Standards (ISO, EN, etc.) apply only where explicitly stated in the brochure.

Further information:

For detailed descriptions of all available interfaces, cables, and connecting elements, as well as general electrical information, please refer to the *Interfaces* of *HEIDENHAIN Encoders* and the *Cables and Connectors* brochures.

Length	gauges: applications and prod	lucts			
	Areas of application				4
	Length gauges from HEIDEN	HAIN			6
	Overview of length gauges				8
Technic	al features and mounting infor	mation			
	Measuring principles				10
	Measuring accuracy				12
	Mounting				16
	Setup				17
	Gauging force and plunger ad	ctuation			19
Specifi	cations		Accuracy	Measuring range	
	Absolute length gauges	HEIDENHAIN-ACANTO	±1 μm ±2 μm	12 mm 30 mm	22
	Incremental length gauges	HEIDENHAIN-CERTO	±0.1 μm; ±0.03 μm* ±0.1 μm; ±0.05 μm*	25 mm 60 mm	24
		HEIDENHAIN-METRO	±0.2 μm	12 mm 25 mm	26
		HEIDENHAIN-METRO	±0.5 μm ±1 μm	60 mm 100 mm	28
		HEIDENHAIN-SPECTO	±1 μm	12 mm 30 mm	30
		Length gauges with low measuring forces	±0.2 μm ±1 μm	12 mm	32
Access	ories				
	Measuring contacts, switch b	oxes, coupling			34
	Gauge stands, ceramic suction	n plate, diaphragm compressor	For HEIDENHAIN-CERTO		36
	Cable release and gauge stan	ds	For HEIDENHAIN-ACANTC and HEIDENHAIN-SPECTC		38

Further information

Signal converters

Calibration according to DAkkS

Related documents

* After linear length-error compensation in the evaluation electronics

40
42
43

Areas of application In quality assurance

In production metrology

Metrology and production control

Length gauges from HEIDENHAIN play a role in incoming goods inspection, fast dimension checking during production, statistical process control in production or quality assurance, or in any application where fast, reliable and accurate length measurement is required. Their large measuring lengths are a particular advantage: whether the part measures 5 mm or 95 mm, it is measured immediately with one and the same length gauge.

Whatever the application, HEIDENHAIN has the appropriate length gauge for the required accuracy. The HEIDENHAIN-CERTO length gauges offer a very high accuracy of $\pm 0.1 \ \mu\text{m} \pm 0.05 \ \mu\text{m}^{*} \pm 0.03 \ \mu\text{m}^{*}$ for extremely precise measurement. Length gauges from the HEIDENHAIN-METRO program have accuracy grades as fine as ±0.2 µm, while the **HEIDENHAIN-SPECTO** length gauges, with ±1 µm accuracy, offer particularly compact dimensions.

* After linear length-error compensation in the evaluation electronics

Workpiece inspection

Inspection of styli

Multi-gauging fixtures

Multi-gauging fixtures require durable length gauges with small dimensions. They should also have relatively large measuring ranges of several millimeters with consistent linear accuracy in order to simplify the construction of inspection devices—for example by enabling the construction of one device for several masters. A large measuring length also provides benefits in master production, because simpler masters can be used.

Thanks to their small dimensions, the HEIDENHAIN-ACANTO absolute length gauges, like the **HEIDENHAIN-SPECTO** incremental length gauges, are specially designed for multi-gauging fixtures. They feature accuracy grades of down to $\pm 1 \, \mu m$ over measuring ranges up to 30 mm. More stringent accuracy requirements of down to $\pm 0.2 \ \mu m$ can be met with similarly compact HEIDENHAIN-METRO length gauges.

Unlike inductive gauges, HEIDENHAIN length gauges provide stable measurement over long periods-eliminating recalibration.

Testing station for flatness inspection

Gauge block calibration and measuring device inspection

The regular inspection of measuring equipment called for by standards, and the inspection of gauge blocks in particular, necessitate a large number of reference standard blocks if the comparative measurement is performed using inductive gauges. The problem is the small measuring range of inductive gauges: they can measure length differences of only up to 10 µm. Length gauges, which offer large measuring ranges together with high accuracy, greatly simplify the calibration of measuring devices required to ensure traceability.

The length gauges of the HEIDENHAIN-**CERTO** product portfolio with measuring ranges of 25 mm with ±0.1 µm/±0.03 µm* accuracy and 60 mm with $\pm 0.1 \,\mu$ m/ ±0.05 µm* accuracy are especially well suited for this task. They permit a significant reduction in the required number of reference standard blocks, and recalibrating becomes much simpler.

Calibration of gauge blocks

Position measurement

Length gauges from HEIDENHAIN are also ideal for position measurement on precision linear slides and X-Y tables. Working with measuring microscopes, for example, becomes much easier thanks to the digital readout and the flexible datum setting.

Here, length gauges from the HEIDENHAIN-METRO and HEIDENHAIN-SPECTO

program come into use with large measuring ranges of 30 mm, 60 mm or 100 mm at consistently high accuracy grades of $\pm 0.5 \,\mu m$ or $\pm 1 \,\mu m$.

In this application as a linear measuring device, the length gauge's fast installation in accordance with the Abbe measuring principle by its clamping shank or plane mounting surface is of special benefit.

Position measurement on an X-Y table for lens mounting

Tolerance gauging of semifinished products

Length gauges from HEIDENHAIN

Length gauges from HEIDENHAIN feature high accuracy over long measuring ranges. These sensors are used whenever lengths need to be measured with speed, reliability, and accuracy.

Long measuring ranges

HEIDENHAIN length gauges are available for measuring ranges of 12 mm, 25 mm, 30 mm, 60 mm, or 100 mm. This lets you measure a wide variety of parts with a single measuring setup without frequently changing cost-intensive gauge blocks or masters.

Wide range of applications

HEIDENHAIN length gauges are suited for many applications. Automatic inspection equipment, manual measuring stations or positioning equipment—wherever lengths, spacing, thickness, height, or linear motion are to be measured, HEIDENHAIN length gauges function quickly, reliably, and accurately.

Absolute position measurement

The HEIDENHAIN-ACANTO length gauges operate with absolute measurement over a range of 12 mm or 30 mm and with high repeatability. Their particular advantage is that the measured value is available immediately after switch-on.

High accuracy

The high accuracy of HEIDENHAIN length gauges applies over the entire measuring range. Regardless of whether the part measures 10 mm or 100 mm, its actual dimensions are always measured with the same high quality. The high repeatability of HEIDENHAIN length gauges is beneficial during comparative measurements, such as in serial production.

The HEIDENHAIN-CERTO length gauges, in particular, exhibit high accuracy and offer nanometer-level resolution.

Expertise

The high quality of HEIDENHAIN length gauges is no coincidence. HEIDENHAIN has been manufacturing high-accuracy scales for over 70 years, and for many years it has developed measuring and testing devices for length and angle measurement for national standards laboratories. This know-how makes HEIDENHAIN an extraordinarily qualified partner for metrology questions.

Robust design

HEIDENHAIN length gauges are built for an industrial environment. Their long-term consistent accuracy and high thermal stability make them ideal for use in production equipment and machines.

Worldwide presence

HEIDENHAIN is represented in all important industrial countries—in most of them with wholly owned subsidiaries. Sales engineers and service technicians support the user on-site with technical information and servicing in the local language.

Overview of length gauges

	^{*)} Af in	ter lir the e	near lei valuati	n
z	HEIDENHAIN			
C	Ð	Ð		
СТ 6000		СТ	Г 2500	

C

٠

Accuracy	Measuring range Plunger actuation	12 mm	25 mm/30 mm	60 mm	100 mm	page
Absolute position	on measurement					
±1 μm ±2 μm	HEIDENHAIN-ACANTO					22
	Via measured object	AT 1218 EnDat	AT 3018 EnDat			
	Pneumatically	AT 1217 EnDat	AT 3017 EnDat			
Incremental line	ear measurement		1			
±0.1 μm ±0.05 μm ^{*)}	HEIDENHAIN-CERTO					24
±0.03 µm ^{*)}	Via motor		CT 2501 ~ 11 μA _{PP}	CT 6001 \sim 11 µA _{PP}		
	Via external coupling		CT 2502 ~ 11 μA _{PP}	CT 6002 ~ 11 μA _{PP}		
±0.2 µm	HEIDENHAIN-METRO					26
	Via cable release or measured object	MT 1271 □ □ □ □ □ MT 1281 ~ 1 V _{PP}	MT 2571 □ ⊥1TTL MT 2581 ~ 1 V _{PP}			
	Pneumatically	MT 1287 \sim 1 V _{PP}	MT 2587 ~~ 1 V _{PP}			
±0.5 μm ±1 μm	HEIDENHAIN-METRO					28
±1 µm	Via motor			MT 60 M \sim 11 μ App	ΜΤ 101 Μ \sim 11 μA _{PP}	
	Via external coupling			ΜΤ 60 K \sim 11 μA _{PP}	MT 101 K \sim 11 μ App	
±1 µm	HEIDENHAIN-SPECTO					30
	Via measured object	ST 1278 □	ST 3078			
	Pneumatically	ST 1277	ST 3077			

near length-error compensation evaluation electronics

ST 3000

8

Measuring principles

Measuring standard

HEIDENHAIN length gauges are characterized by long measuring ranges and consistently high accuracy. The basis for both is the photoelectrical scanning principle.

HEIDENHAIN length gauges use material measuring standards consisting of absolute or incremental graduations on substrates of glass or glass ceramic. These measuring standards permit large measuring ranges, are insensitive to vibration and shock, and have a defined thermal behavior. Changes in atmospheric pressure or relative humidity have no influence on the accuracy of the measuring standard—which is the prerequisite for the **high long-term** stability of HEIDENHAIN length gauges.

HEIDENHAIN manufactures the precision graduations in specially developed, photolithographic processes.

- AURODUR: matte-etched lines on goldplated steel tape with typical graduation period of 40 um
- METALLUR: contamination-tolerant graduation of metal lines on gold, with typical graduation period of 20 µm
- DIADUR: extremely robust chromium lines on glass (typical graduation period of 20 µm) or three-dimensional chromium structures (typical graduation period of 8 µm) on glass
- SUPRADUR phase grating: optically three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and finer
- OPTODUR phase grating: optically three dimensional, planar structure with particularly high reflectance, typical graduation period of 2 µm and finer

Along with these very fine grating periods, these processes permit a high definition and homogeneity of the line edges. Together with the photoelectric scanning method, this high edge definition is a precondition for the high quality of the output signals.

The master graduations are manufactured by HEIDENHAIN on custom-built highprecision dividing engines.

Measurement procedure

With the incremental measuring method, the graduation consists of a periodic grating structure. The position information is obtained by counting the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the measuring standard is provided with an additional track that bears a reference mark. The absolute position on the scale, established by the reference mark, is gated with exactly one signal period

The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

With the absolute measuring method, the position value is available from the encoder immediately upon switch-on and can be called at any time by the subsequent electronics. There is no need to move the axes to find the reference position. The absolute position information is read from the measuring standard, which is formed from a serial absolute code structure. A separate incremental track is interpolated for the position value and at the same time-depending on the interface version—is used to generate an optional incremental signal.

Photoelectric scanning principle

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such, free of wear. This method detects even very fine lines, no more than a few micrometers wide, and generates output signals with very small signal periods.

The finer the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning. HEIDENHAIN linear encoders use two scanning principles:

- The imaging scanning principle for grating periods of 20 µm and 40 µm
- The interferential scanning principle for very fine graduations with grating periods of, for example, 8 um.

Imaging principle

To put it simply, the imaging scanning principle functions by means of projectedlight signal generation: two scale gratings with equal or similar grating periods are moved relative to each other-the scale and the scanning reticle. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index arating is located here. When the two graduations move in relation to each other, the incident light is modulated: if the gaps are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through. A photocell array converts these variations in light intensity into electrical signals. The specially structured grating of the scanning reticle filters the light to generate nearly sinusoidal output signals.

The smaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and scale.

The HEIDENHAIN-ACANTO and HEIDENHAIN-SPECTO length gauges, as well as the MT 60 and MT 100 HEIDENHAIN-METRO length gauges, use the imaging principle.

Interferential scanning principle

The interferential scanning principle exploits the diffraction and interference of light on a fine graduation to produce signals used to measure displacement.

A step grating is used as the measuring standard: reflective lines 0.2 µm high are applied to a flat, reflective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.

When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders -1, 0, and +1. with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the reflected diffraction orders +1 and -1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals.

> Interferential scanning principle (optics schematics) C Grating period $\psi\,$ Phase shift of the light wave when passing through the scanning reticle Ω Phase shift of the light wave due to motion X of the scale

DIADUR phase grating with approx. 0.25 µm grating height

5 Hm

A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: When the grating moves by one period, the wave front of the first order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order -1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.

Interferential encoders function with grating periods of, for example, 8 µm, 4 µm, and finer. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for high resolution and high accuracy.

The HEIDENHAIN-CERTO length gauges, as well as the MT 1200 and MT 1500 HEIDENHAIN-METRO length gauges, use the interferential principle.

Measuring accuracy

The linear measurement accuracy is mainly determined by the following factors:

- The quality of the graduation
- The scanning quality
- The quality of the signal processing electronics
- The eccentricity of the graduation relative to the bearing
- The guideway error of the scale relative to the scanning unit
- The orthogonality of the length gauge relative to the bearing surface.

These factors can be divided into encoderspecific errors and application-specific factors. For assessment of the attainable **overall accuracy**, all of these individual factors must be taken into account.

Error specific to the measuring device

The error that is specific to the measuring device is stated in the specifications as the **system accuracy**.

The extreme values of the **total error F** of a position are, on average, within the system accuracy ±a along the entire measuring range. They are measured during final inspection and documented in the calibration chart.

The system accuracy includes the following:

- The homogeneity and period definition of the graduation
- The alignment of the graduation
- The error of the bearing
- The position error within one signal period.

The Interpolation error within one signal period

The interpolation error within one signal period has an effect even during very small movements and repeated measurements. It is therefore considered separately.

The interpolation error within one signal period \pm u results from the scanning quality and, for encoders with integrated pulse-shaping or counter electronics, the quality of the signal-processing electronics. For encoders with sinusoidal output signals, however, the error from the signal processing electronics is dictated by the subsequent electronics.

The following factors influence the outcome:

- The fineness of the signal period
- The homogeneity and period definition of the graduation
- The quality of the scanning filter structures
- The characteristics of the sensors
- The stability and dynamic performance of the analog signal processing

These sources of error must be considered when specifying the interpolation error within one signal period.

The interpolation error within one signal period $\pm u$ is specified as a percentage of the signal period. For length gauges, this value is typically better than $\pm 1\%$ of the signal period. You will find the specified values in the Specifications.

Short-range accuracy

The short-range accuracy describes the amount of error that occurs within a distance of $\pm 100 \,\mu$ m from a measuring point and includes electronic and mechanical influences of the gauge on the measurement. The values for short-range accuracy typically lie below the specified values.

Application-dependent error

Other factors besides the system accuracy also influence the attainable total accuracy of measurement. These include in particular the ambient temperature and temperature fluctuations during measurement as well as a stable, orthogonal measuring setup.

All components included in the **measuring loop**, such as the holder for the measured object, the gauge stand with holder, and the length gauge itself, influence the result of measurement. Expansion or deformation of the measuring setup through mechanical or thermal influences adds directly to the error.

Mechanical design

A stable measuring assembly must be ensured. Long lateral elements within the measuring loop are to be avoided. HEIDEN-HAIN offers a stable gauge stand as an accessory. The force resulting from the measurement must not cause any measurable deformation of the measuring loop.

Length gauges from HEIDENHAIN operate with small gauging force and have very little influence on the measuring setup.

The length gauge is to be mounted so that its plunger is exactly orthogonal to the measured object or the surface on which it rests. Deviations result in measuring error.

The accessory HEIDENHAIN gauge stands with holders for an **8 mm clamping shank** ensure orthogonal mounting. Length gauges that provide **planar mounting surfaces** must be set parallel to the mounting surface (Y) and perpendicularly to the measuring plate. A quick and reliable adjustment is possible with the aid of a gauge block or a parallel block. The perpendicularity to the measuring table (X) is already ensured by the gauge stand.

The measuring loop: All components involved in the measuring assembly, including the length gauge

Thermal characteristics

Temperature variations during measurement cause changes in length or deformation of the measuring setup. After a change in temperature of 5 K, a steel bar of 200 mm length expands by $10 \,\mu$ m.

Length changes resulting from a uniform deviation from the reference temperature can largely be compensated by resetting the datum on the measuring plate or a master; only the expansion of the scale and measured object go into the result of measurement.

Temperature changes during measurement cannot be ascertained mathematically. For critical components, HEIDENHAIN therefore uses special materials with low coefficients of expansion, such as are found in the HEIDENHAIN-CERTO gauge stand. This makes it possible to guarantee the high accuracy of HEIDENHAIN-CERTO even at ambient temperatures of 19 °C to 21 °C and variations of ± 0.1 K during measurement.

In order to measure with complete accuracy, the length gauge should be switched on approximately 15 minutes before the first measurement.

Thermal length change: Expansion of the measuring loop components as a result of heat

Calibration chart

All HEIDENHAIN length gauges are inspected before shipping for accuracy and proper function.

They are calibrated for accuracy during retraction and extension of the plunger. For the HEIDENHAIN-CERTO, the number of measuring positions is selected to ascertain very exactly not only the longrange error, but also the position error within one signal period.

The Quality Inspection Certificate confirms the specified system accuracy of each length gauge. The **calibration standards** ensure the traceability—as required by EN ISO 9001-to recognized national or international standards.

For the HEIDENHAIN-METRO and HEIDENHAIN-CERTO series, a calibration chart documents the position error over the measuring range. It also shows the measuring step and the measuring uncertainty of the calibration measurement.

For the HEIDENHAIN-METRO the calibration chart shows the mean value of one forward and one backward measuring stroke.

The HEIDENHAIN-CERTO calibration chart shows the envelope curve of the measured error. The HEIDENHAIN-CERTO length gauges are supplied with two calibration charts, each for different operating orientations.

Operating orientation for calibration chart 1

Operating orientation for calibration chart 2

]														HE	D	IN	H/	AIN	1
	litätspri 350-18-4.2.2	üf-Ze	rtifik	at			uality 155 350-			tion	Certi	fica	te		MT ID SN	37	249	5-0		
Positionsa Position e	sbweichung Flur mar Flum]	Tri I																		
0,6	-		-	-		-		-	_	-	-	_	-	_	-	-	-	-	_	
0,4																				
0,2																				
0,0						_	-	-	-	-				-						
F					-														-	-
0,2																				
0,4			- 1																	
0,6			5				10)				15				20	Mess	position	Pos, (mn	4
0,6 0 Die Messi Vorwärts- Postorea Postorea Postorea Postorea Maximal	kurve zeigt die M und Rückweitsn bweidrung F des tessposition der tessposition des te Positionsatwee b 25 mm	nessung s Längenm Messmas Längenme	der Posit essgeräte chine essgeräte	15: F = F		5	The error measurer Position e Pos _{el} = p Pos _e = p	curve st ments in mor F of osition m osition m	forward.	and back r encode by the r by the la	lues of the ward direct c: F = Pas _M wesuring h rear encode	position ion.	t errors fro ± 0.11			20	Mess Meas	position lured pos	Pos, (mn sition Pos	nî -
Die Messi Vorwärts- Pos _W = M Pos _W = M Maxmall innerhalt	und Rückwärtsn bweichung F des fessposition der I fessposition des le Positionsabwe	nessung s Längenm Messmas Längenm idhung der	der Posit essgeräte chine essgeräte	15: F = F	Pos _{to} – Pos _t	5	The error measurer Position e Pos _{ti} = p Pos _t = p Maximu within 2	curve st ments in mor F of osition n osition n m positi 5 mm	forward i the finea neasured neasured	and back r encode by the n by the la	ives of the ward direct r: F = Pos _u wasuring n war encode or ourve	position ion.				20	Mess	position lured pos	Pos, [mn sition Pos	nî -
0,6 0 Die Messi Vorwärts- Postornaa	und Rückwärtsn bweichung Fides lessposition der I lessposition des le Positionsatzwe 5 25 mm	nessung s Längenm Messmas Längenm ichung der ichung der	e der Posit essgeräte chine essgeräte r Messku	ss: F = F IS rve	Pos _{la} – Pos _l ± 0,11	5	The error measurer Position e Position e Positi = p Positi = p Maximu within 2	curve st ments in mor F of osition m osition m osition m 5 mm 5 mm	forward i the fine neasured on error o neasuring	and back of ancode by the in by the is of the em	ives of the ward direct r: F = Pos _u wasuring n war encode or ourve	position – Ros _e actine a	±0.11	μm		20	Mess	sposition sured pos	Pos, (mn sition Pos	nî -
0,6 0 Die Messi Vorwärts- Postornaa	und Rückwürtsn bewichung Fides Hessposition der Ise Positionsabwe 5 25 mm heit der Messen L03 µm + 0.06 -1	nessung s Längenm Messmas Längenm ichung der ichung der	e der Posit essgeräte chine essgeräte r Messku	ss: F = F IS rve	Pos _{la} – Pos _l ± 0,11	5	The error measurer Postion e Post = p Post = p Maximu within 2 Uncerta $U_{max} = 0$	curve si nents in rear F of osition n osition n osition n 5 mm 5 mm 103 µm	forward i the fine neasured on error o neasuring	and back r encode by the in by the in of the en machine 0 ⁻⁴ - L (L	lues of the ward direct c. F = Ros _w wasuning in war encode or curve	position – Ros _e actine a	±0.11	μm		20	Mess	position luxed pos	Pos, (mn siton Pos	nî -
0.6 0 Die Messi Vorwitts- Post of the second Post of the second Post of the second Interhalt Unsicher Unsicher Unsicher Unsicher Messpar Messach	und Rückwillten loweichung Fide lessposition der lessposition des le Positionsabwe le Positionsab	nessung s Längenm Messmas Längenm idhung der aschine 10 ⁴¹ - L (L =	e der Posit ressgeräte essgeräte r Messiku r Länge N	ss: F = F IS rve	Pos _{te} - Pos _t ± 0,11 ervell)	um m	The error measurer Position e Pos ₂ = p Pos ₂ = p Maximu within 2 Uncerta Uncerta Uncerta Measure Measure	curve st ments in nor F of osition m osition m mosition m mosition m mosition m mosition m emont p emont si	forward / the finea neasured on error o neasuring + 0.06 -10 autmeters tep	and back r encode by the n by the is of the en machine 0 ⁻¹ - L (L s	kes of the ward direct easuring in ware encode or curve - measurer	position – Ros _e actine a	± 0.11 ; erval lengt 1000 µ	um V		20	Mess	sposition tured pos	Pos, [mn sition Pos	nî -
0,6 0 Die Messi Vorwärts- Postionsa Post = M Post = M Maxmali innerhalt Unsicher Ussicher Messich Erster Ri	und Rückwürtsn beweichung Fides Nessposition des Nerssposition des	nessung s Längenm Messmas Längenm idhung der aschine 10 ⁴¹ - L (L =	e der Posit ressgeräte essgeräte r Messiku r Länge N	ss: F = F IS rve	Pos _{te} - Pos _t ± 0,11 ervail)	um n	The error measurer Position e Pos ₂ = p Pos ₂ = p Maximu within 2 Uncerta Uncerta Uncerta Measure Measure	curve st ments in mor F of osition m osition m mosition m mosition m mosition m mositi 5 mm nty of m 1.03 µm mont p ement si infence p	forward i the finea neasured on error c neasuring + 0.06 10 aumeter tep ulse at m	and back r encode by the n by the is of the en machine 0 ⁻¹ - L (L s	kes of the ward direct easuring in ware encode or curve - measurer	position – Ros _e actine a	± 0.11 ; erval lengtl	ניית ע ח ו		20	Mess	specifien	Pos, Imn	nî -
0.6 0 Die Messi Vorwärts- Preifornsa Prob ₂ = M Prob ₂ = M Maximal Innerhalt Unsicher Unsicher Unsicher Erster R Belatve	und Rückwillten bowiichung Folge tessposition des tessposition des te Positionsabwe to 25 mm cheit der Messm cheit der Messm c	nessung s Längenm Messmas Längenm ichung der eschine 0 ⁻⁴ - L (L = ei Messpor	essgeräte chine essgeräte r Messkur Länge N sition	is: F = F is rve	Pos _e = Pos _e ± 0.11 sveit) 1000 µ 23 mm max, 5	um n	The error measure Position e Pos _t = p Pos _t = p Maximu within 2 Uncerta U _{ma} = 0 Measure Measure First role Relative	curve st entrs in position m position m position m m position m m position of m m mont p ement si erence p hurmidity r encode es with th	forward . the finea heasured heasured on error c heasuring + 0.06 10 arameters tep use at m v. rr has bee he stringe at a refer	and back r encode by the n by the lin by the lin of the en- r machine 0 ⁻² - L (L) s leasured int manual int qualit ence fair	kes of the ward direct easuring in ware encode or curve - measurer	positor on. - Ros _e achine r nent intr f inspec of HEI	± 0.11 j arva/ lengtl 1000 µ 23 mm max. 5i ted in ted in	ער ע ע ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג		20	Mess	position sured pos	PDa _t [mn	nî -
0,6 0 Die Messi Verwints- Pesig en M Pesig = M Maxmal innerhalt Unsicher Unsicher Unsicher Belatvel Die Forin ven 20 °C Kälbriert	und Rüdwillfsm bweidrung F des lessposition des lessposition des les Positionsabwei be 25 mm that der Messam hatt der Messam h	nessung s Längenm Messmas Längenm idhung der eschine 10 ⁻⁴ - L (L = ei Messpor twurde un rmen hers liegt bei e enauigkeit	essgeräte chine essgeräte r Messkur Länge N sition	es: F = F s rve lessinte gåtemp gatemp gatemp s 0,2 pn	Pos _u = Pos _s ± 0,11 rvall) 23 mm max, 5 uift. seratur n.	um n	The error measures Rosicion Pass, = p Ros, = p Ros, = p Maximu within 2 Uncertat U _{min} = 0 Measure Me	curve sh mems in mor F of oshon n oshon n m positi f S mm inty of m inty of m inty of m intro f intro	forward. the finea heasured on error o heasuring + 0.06 10 aumetern top u/se at m v. er has bee he stringe at a role te e 2.2 µ	and back r encode by the n by the is of the en machine 9 ⁻⁴ L E. s easured an manual rence to rm.	kess of the ward direct seasuring in wasuring in wasuring in an or curve - measurer position position	cosition - Ros, achine r nent nti finspec	± 0.11 ; erval lengt 1000 µ 23 mm max. 5 ted in DENHAIN les within	ער ע ע ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג		20	Mess	sposition suried pos	Pos, Imm otion Pos	nî -

Temperature range

Example

The length gauges are inspected at a reference temperature of 20 °C. The system accuracy given in the calibration chart applies at this temperature. The operating temperature range indicates the ambient temperature limits

between which the length gauges will function properly.

The storage temperature range of -20 °C to 60 °C applies for the device in its packaging.

Repeatability

Whereas the system accuracy applies over the entire measuring range, for some applications the repeatability is the decisive factor. It plays an important role in repeated measurements.

Repeatability is defined in the standards DIN 32876 and DKD-R 4-3, and describes a length gauge's capability to supply very similar measured values for identical measurands and conditions.

HEIDENHAIN ascertains the repeatability of the length gauges with five measurements near the lower plunger stop. The plunger is completely extended and retracted at medium speed. Since the length gauge was already in operation for at least 10 minutes before this, it is already in a stable thermal state.

The repeatability of the length gauges is usually better than the values listed in the table. The characteristic statistical distribution is shown in the diagram, using the ST 1200 as an example.

Repeatability depends on the • combinations of materials used in the

- components, • installed electronics,
- optomechanics used, and the
- bearing of the plunger.

ST 1200: Statistical distribution of the repeatability

Series	$\frac{\text{Repeatability}}{<\bar{x}+2\sigma}$
AT 1200	0.4 µm
AT 3000	0.8 µm
CT 2500	0.02 µm
CT 6000	0.03 µm
MT 101	0.04 µm
MT 1200	0.03 µm
MT 2500	0.09 µm
MT 60	0.06 µm
ST 1200	0.25 µm
ST 3000	0.7 µm

Mounting

Setup

Abbe principle

HEIDENHAIN length gauges enable you to work according to the Abbe measuring principle: the measured object and scale must be in alignment to avoid additional measuring error.

Fastening

The CT 6000, MT 60, and MT 101 length gauges are fastened by two screws onto a plane surface. This ensures a mechanically stable installation of even these large length gauges. Special holders are available for fastening the MT 60 and MT 101 to the MS 100 gauge stand for the HEIDENHAIN-METRO (see Accessories).

The CT 2500 is mounted by its standard clamping shank with 16h8 diameter. A holder is available for fastening the HEIDENHAIN-CERTO to the gauge stand (see Accessories).

The AT, ST, MT 1200, and MT 2500 length gauges feature a standard clamping shank with 8h6 diameter. These HEIDENHAIN length gauges can therefore easily be used with existing measuring fixtures and stands.

HEIDENHAIN offers the choice of a special clamping sleeve or a clamping bush with one screw each. These accessories make it easier to fasten the length gauge without overloading the 8h6 clamping shank or damaging the ball-bush guide. The clamping bush also enables a wide tolerance field for the tightening torque and improves fastening. Clamping sleeve: ID 386811-01 Clamping bush: ID 1177968-02

Operating orientation for **HEIDENHAIN-CERTO**

The HEIDENHAIN-CERTO can be operated at any attitude. However, the mounting position with horizontal length gauge and upward facing mounting surface should be avoided because in such a case no guarantee can be made for accuracy.

HEIDENHAIN length gauges function according to the **Abbe measuring** principle, i.e. the measuring standard and the plunger are exactly aligned. All components comprising the measuring loop, such as the measuring standard, plunger, holder, and scanning head are designed in terms of their mechanical and thermal stability for the highest possible accuracy of the length gauge.

The plungers of the HEIDENHAIN length gauges are locked against rotation. Their optimally round form stays unchanged while stability and thermoconductivity remain unimpaired. They are provided with an M2.5 thread to hold measuring contacts (see Accessories)

The plungers of the HEIDENHAIN-ACANTO and HEIDENHAIN-SPECTO ST 1200 length gauges are protected by a rubber bellows. The **bellows** is characterized by high resistance to chemical and thermal influences and have a relatively low stiffness. Its influence on the gauge's mechanical behavior and the measuring force is therefore low.

Thermal characteristics

HEIDENHAIN length gauges have a defined thermal behavior. Since temperature variations during measurement can result in changes in the measuring loop, HEIDEN-HAIN uses special materials with low coefficients of expansion α_{therm} for the components of the measuring loop, for example in the CERTO length gauges. The scale is manufactured of Zerodur $(\alpha_{\text{therm}} \approx 0 \text{ K}^{-1})$, and the plunger and holder are of Invar ($\alpha_{\text{therm}} \approx 1 \times 10^{-6} \text{ K}^{-1}$). This makes it possible to guarantee its high measuring accuracy over a relatively large temperature range.

Acceleration

Length gauges from HEIDENHAIN feature a **sturdy design.** Even high vibration and shock loads have no negative influence on accuracy.

Shock and vibration of any kind, however, are to be avoided during measurement so as not to impair the high accuracy of the measurement. The maximum values given in the specifications for shock and vibration apply to the effect of external acceleration on the length gauge. They describe only the mechanical stability of the length gauge, and imply no guarantee of function or accuracy.

In the length gauge itself, unchecked extension of the spring-driven or noncoupled moving plunger can cause high acceleration onto the measured object or measuring plate surface. For the MT 1200 and MT 2500 series length gauges, use the cable release whenever possible (see Accessories). The cable release features adjustable pneumatic damping to limit the extension velocity to an uncritical value.

Design of CT 6000

Gauging force and plunger actuation

Plunger guideway

HEIDENHAIN length gauges are available with various plunger guides.

The plungers of the HEIDENHAIN-ACANTO length gauges work with sliding quides. The sliding guides have the following properties:

- Sturdiness thanks to few moving parts
- Impervious to shock and vibration
- High plunger speeds and long service life thanks to high-quality ceramic bearings
- Less sensitivity to improper clamping

The HEIDENHAIN-METRO, HEIDENHAIN-CERTO, and HEIDENHAIN-SPECTO length gauges are equipped with a **ball-bush** guide. The following are some of the basic properties of ball-bush guides in HEIDENHAIN length gauges:

- Low friction, which makes versions of length gauges with reduced gauging force possible
- Safe plunger extension and retraction even with high radial force
- High precision of the measuring loop thanks to a guide that is free of play (the bearing and plunger are specially fitted during manufacture)

Expendable parts

HEIDENHAIN length gauges contain components that are subject to wear, depending on the application and manipulation. These include in particular the following parts:

- Guideway (tested for at least 60 million strokes*)
- Cable link for CT, MT 60, and MT 101 (tested for at least 1 million strokes*) Scraper rings
- Rubber bellows for AT and ST 1200
 - * With CT, MT 60M, and MT 101M only with actuation by switch box

Note

DIADUR is a registered trademark of DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany. Zerodur is a registered trademark of Schott Glaswerke in Mainz, Germany.

Gauging force

Gauging force is the force that the plunger exercises on the measured object. If the gauging force is too high, then the measuring contact or measured object may deform in response. If the gauging force is too low, then a layer of dust or contamination may prevent the plunger from fully contacting the measured object. The gauging force depends on the type of plunger actuation.

Spring-based plunger actuation

For the AT 1218, AT 3018, MT 12x1, MT 25x1, ST 12x8, and ST 30x8, a built-in spring extends the plunger to the measuring position and produces the **gauging force**. The plunger is extended when at rest. The gauging force depends on the following criteria:

- The operating orientation
- The plunger position (the force changes
- over the course of the measuring range) • The direction of measurement (whether extension or retraction of the plunger is used)

The graphs show the gauging force across the measuring range during horizontal retraction and extension of the plunger.

The MT 1281 and ST 1288 length gauges are available with various gauging forces. Delicate materials can therefore be measured without deformation.

following classes:

- Reduced MR: approx. half the gauging force of the standard variant
- Low MW: gauging force at the beginning of the measuring range, approx. 0.01 N
- Springless MG: constant gauging force over the entire measuring range So as not to influence the gauging force,

the ST 1288 MR and ST 1288 MG variants are provided without a bellows.

Plunger actuation via measured object

The complete length gauge is moved by the measuring device toward the measured object, or vice versa. The measurement is usually performed via plunger retraction.

12 mm measuring range

1.3

10

1.1

1.0 0.9

0.8

0.7

0.6

0.5 -

0.4

18

The gauging forces can be divided into the

Plunger actuation via a cable release (MT 12x1, MT 25x1)

In this method, the plunger is manually raised and lowered onto the measured object by means of a cable release. This measurement is performed with plunger extension.

Built-in, adjustable pneumatic damping reduces the plunger extension speed so as to prevent rebound (e.g., on very hard materials). This prevents measuring error due to bouncing.

25 mm/30 mm measuring range

Pneumatic plunger actuation

The pneumatically actuated plungers of the AT 1217, AT 3017, MT 1287, MT 2587, ST 12x7, and ST 30x7 length gauges are extended by the application of compressed air. When the air connection is ventilated, the integral spring retracts the plunger. to a protected resting position within the housing.

The **gauging force** can be adjusted to the measuring task through the level of air pressure. At constant pressure, it depends on the operating orientation and the plunger position.

The diagrams show the respective gauging force for a horizontal operating orientation depending on the working pressure applied with the plunger fully extended and fully retracted. These are approximate values that are subject to changes due to tolerances and depend on seal wear.

The working pressure defines the pressure range of the first complete plunger extension up to the maximum specified range.

Note

The compressed air introduced directly into the length gauges must be properly conditioned and must comply with the following quality classes as per **ISO 8573-1** (1995 edition):

- Solid contaminant: Class 1 (max. particle size 0.1 μ m and max. particle density 0.1 mg/m³ at 1 \cdot 10⁵ Pa)
- Total oil content: Class 1 (max. oil concentration 0.01 mg/m³ at 1 · 10⁵ Pa)
- Max. pressure dew point: Class 4 but with reference conditions of +3 °C at $2 \cdot 10^5$ Pa

HEIDENHAIN offers the **DA 400 compressed air unit** for purifying compressed air. The minimum flow rate is 10 l/min.

For more information, ask for our *DA 400* Product Information Sheet.

Motorized plunger actuation

The CT 2501, CT 6001, MT 60 M, and MT 101 M length gauges feature an integral motor that moves the plunger. It is operated through the switch box either by push button or over the connection for external actuation. The plungers of the CT 2501, CT 6001, and MT 60 M length gauges must not be moved by hand if the switch box is connected.

The **gauging force** of the CT 2501, CT 6001, and MT 60 M motorized length gauges is adjustable in three stages through the switch box. The force remains constant over the measuring range but depends on the operating orientation.

Regardless of the operating orientation whether it measures vertically downward (with the SG 101V switch box) or horizontally (with the SG 101 H switch box)—the MT 101 M exercises a constant gauging force.

	CT 2501 CT 6001	MT 60M	MT
Gauging force	Via motor	Via motor	Via n
Vertically downward	0.85 N/1 N/1.45 N	1 N/1.25 N/1.75 N	0.7 1
Vertically upward	-/-/0.55 N	-/-/0.85 N	-
Horizontal	–/0.55 N/1 N	-/0.8 N/1.3 N	0.7 1

External plunger actuation via coupling

For the CT 2502, CT 6002, MT 60K, MT 101 K, and special versions (without spring) of the MT 1200, MT 2500, and ST 1288, the plunger is freely movable. For position measurement, the plunger is connected by a coupling with a moving machine element. The force needed to move the plunger is specified as the required **moving force.** It depends on the operating orientation.

	CT 2502 CT 6002	MT 60K	MT 101 K	MT 1271 TL MT 1281 ~ 1 V _{PP}	MT 2571 □ □ □ □ □ MT 2581 ~ 1 V _{PP}	ST 1288
Gauging force	Moving force ¹⁾	Moving force ¹⁾	Moving force ¹⁾	-	-	-
Vertically downward	0.45 N	0.4 N	1.7 N	0.13 N	0.17 N	0.2 N
Vertically upward	0.55 N	0.55 N	2 N	-	_	-
Horizontal	0.15 N	0.15 N	0.4 N	-	-	-

¹⁾ Force required to move the plunger or the force of its weight

12 mm measuring range (pneumatically actuated)

25 mm/30 mm measuring range (pneumatically actuated)

The diagrams apply for the **horizontal operating orientation**, except for special variants. The following compensation values are to be taken into account for other operating orientations.

Model	Operating orientation vertical		
	Upward	Downward	
AT 121x	–0.12 N	+0.12 N	
AT 301x	–0.18 N	+0.18 N	
MT 12xx	-0.13 N	+0.13 N	
MT 1281MR	-	+0.13 N	
MT 25x1	-0.17 N	+0.17 N	
MT 2587	-0.19 N	+0.19 N	
ST 12x7	-0.07 N	+0.07 N	
ST 12x8	-0.08 N	+0.08 N	
ST 30xx	-0.11 N	+0.11 N	

21

N with SG 101 H

N with SG 101V

motor

101 M

HEIDENHAIN-ACANTO

Absolute length gauges with EnDat interface

Online diagnostics

- Protection rating of up to IP67
- Serial data transmission with CRC

6

Ø 4.5 $^{+0.6}_{-0}$

mm mm ← → ⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

M2.5

ML = Measuring length Image: Book of the second s O = Air connection for 2 mm tube

Mechanical data	AT 1218	AT 3018	AT 1217	AT 3017		
Plunger actuation Position of plunger at rest	Via measured object Extended	:	Pneumatic Retracted			
Measuring standard	DIADUR grating on glass; grating period: 188.4 µm					
System accuracy	±1 µm	±2 μm	±1 μm	±2 μm		
Position error per signal period	≤ ±0.7 µm					
Measuring range	12 mm	30 mm	12 mm	30 mm		
Working pressure	-	1	0.7 bar to 1.8 bar	1.1 bar to 1.8 bar		
Mech. permissible traversing speed	≤ 80 m/min	≤ 120 m/min	≤ 80 m/min	≤ 120 m/min		
Radial force	≤ 0.5 N (mechanicall	y permissible)				
Fastening	Clamping shank Ø 8	h6				
Operating orientation	Any					
Vibration 55 Hz to 2000 Hz Shock 11 ms	$\leq 100 \text{ m/s}^2 \text{ (EN 6006)}$ $\leq 500 \text{ m/s}^2 \text{ (EN 6006)}$	68-2-6) 68-2-27)				
Operating temperature	10 °C to 40 °C; refere	ence temperature: 2	0°C			
Protection EN 60529	IP67		IP64 ¹⁾ IP67 upon request	IP64 ¹⁾		
Mass without cable	80 g	100 g	80 g	100 g		

¹⁾ IP67 with sealing air

man and a second s	5.5.4
Electrical data	EnDat
Interface	EnDat 2.2
Ordering designation	EnDat 22
Measuring step	23 nm 368
Calculation time t _{cal}	≤ 5 µs
Clock frequency	≤ 8 MHz
Electrical connection	8-pin M12 flange socket (r
Cable length	≤ 100 m with HEIDENHAI
Supply voltage	DC 3.6 V to 14 V
Power consumption (max.)	<i>3.6 V</i> : ≤ 550 mW
	<i>14 V:</i> ≤ 650 mW
Current consumption (typical)	5 V: 80 mA (without load)

8 nm	23 nm	368 nm
(male)		
AIN cable		
1		

HEIDENHAIN-CERTO

Incremental length gauges with ±0.1 $\mu m/\pm0.05^{1)}\,\mu m^*/\pm0.03\,\mu m^{1)}$ accuracy • For very high accuracy

CT 2500

- Low thermal expansion through thermally invariant materials
- High-precision ball bearing guide

CT 6000

33

1.7±0.3

Ŕ

00

61±0.5

Ę

25

Mechanical data	CT 2501	CT 6001	CT 2502	CT 6002
Plunger actuation	Via motor Via coupling with moving machine part			oving machine part
Measuring standard	DIADUR phase gratir	ng on Zerodur glass cer	amic; grating period: 4	lμm
System accuracy at 19 °C to 21 °C	±0.1 μm, ±0.03 μm ¹⁾	±0.1 μm, ±0.05 μm ¹⁾	±0.1 μm, ±0.03 μm ¹⁾	±0.1 μm, ±0.05 μm ¹⁾
Position error per signal period	≤ ±0.02 µm			
Short-range accuracy typically	0.03 μm			
Reference mark	One, approx. 1.7 mm below upper stop			
Measuring range	25 mm	60 mm	25 mm	60 mm
Radial force	≤ 0.5 N (mechanically permissible)			
Fastening	Clamping shank (Ø 16h8)	Plane surface	Clamping shank (Ø 16h8)	Plane surface
Operating orientation	Any (for preferred operating orientation, see <i>Mounting</i>)			
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)			
Operating temperature	10 °C to 40 °C; reference temperature: 20 °C			
Protection EN 60529	IP50			
Mass without cable	520 g	700 g	480 g	640 g

Electrical data	CT 2501	CT 6001	CT 2502	CT 6002
Interface	∕~ 11 µА _{РР}	~ 11 μΑρρ		
Signal period	2 µm	2 µm		
Measuring velocity	\leq 24 m/min (depending on the subsequent electronics) \leq 12 m/min with the ND 28x digital readout			
Electrical connection*	 Cable 1.5 m with 15-pin D-sub connector (male) Cable 1.5 m with 9-pin M23 connector (male) Interface electronics integrated in connector 			
Cable length	≤ 30 m			
Supply voltage	DC 5 V ±0.25 V/< 170 mA DC 5 V ±0.25 V/< 120 mA) mA	
Required accessories*	For CT 2501		For CT 6001	
Switch box	SG 25 M		SG 60 M	

Electrical data	CT 2501	CT 6001	CT 2502	CT 6002
Interface	∕~ 11 µА _{РР}	~ 11 μApp		
Signal period	2 µm	2 µm		
Measuring velocity	\leq 24 m/min (depending on the subsequent electronics) \leq 12 m/min with the ND 28x digital readout			
Electrical connection*	 Cable 1.5 m with 15-pin D-sub connector (male) Cable 1.5 m with 9-pin M23 connector (male) Interface electronics integrated in connector 			
Cable length	≤ 30 m			
Supply voltage	DC 5 V ±0.25 V/< 170 mA DC 5 V ±0.25 V/< 120 mA) mA	
Required accessories*	For CT 2501		For CT 6001	
Switch box	SG 25 M		SG 60 M	

* Please select when ordering
 ¹⁾ After linear length-error compensation in the evaluation electronics
 ²⁾ Force required to move the plunger or the force of its weight

low upper stop		
) mm	25 mm	60 mm
ermissible)		
ane surface	Clamping shank (Ø 16h8)	Plane surface
ting orientation, see	Mounting)	
2-6) 2-27)		
e temperature: 20 °C	2	
)() a	480 a	640 a

HEIDENHAIN-METRO

Incremental length gauges with ±0.2 μm accuracy • High repeatability

- Various gauging force variants
 Various possibilities for plunger actuation

R = Reference mark position
S = Beginning of measuring length
= Clamping area

MT 1287

22.0

6.2

4.2

MT 2587

41.0

6.2

4.2

Mechanical data	MT 1271		М
	MT 1281 ~ 1		M
Plunger actuation Position of plunger at rest	Via cable or mea Extended	sured	ob
Measuring standard	DIADUR phase	grating	jо
System accuracy	±0.2 µm		
Position error per signal period	≤ ±0.02 µm		
Short-range accuracy typically	0.03 µm		0.0
Reference mark	≈ 1.7 mm below	upper	r st
Measuring range	12 mm		25
Working pressure	-		
Radial force	≤ 0.8 N (mechar	nically	pe
Fastening	Clamping shank	Ø 8h6	6
Operating orientation	Any; for version	witho	ut
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN \leq 1000 m/s ² (EN	1 6006 1 6006	8-2 8-2
Operating temperature	10 °C to 40 °C; r	eferen	nce
Protection EN 60529	IP50		
Mass without cable	100 g		18

Electrical data	MT 1271 MT 2571		MT 128x MT 258x
Interface			\sim 1 V_{PP}
Integrated interpolation*	5-fold	10-fold	-
Signal period	0.4 µm	0.2 µm	2 μm
Mech. permissible traversing speed	≤ 30 m/min		
Edge separation a at scanning frequency*/traversing speed200 kHz≤ 24 m/min200 kHz≤ 12 m/min100 kHz≤ 12 m/min50 kHz≤ 6 m/min25 kHz≤ 3 m/min	≥ 0.23 µs ≥ 0.48 µs ≥ 0.98 µs −	- ≥ 0.23 μs ≥ 0.48 μs ≥ 0.98 μs	_
Electrical connection* (interface electronics integrated in connector)	Cable 1.5 m with 15-pin D-sub connector (male)		Cable 1.5 m with • 15-pin D-sub connector (male) • 12-pin M23 connector (male)
Cable length	≤ 30 m with HEIDENHAIN cable		
Voltage supply	DC 5 V ±0.5 V/< 160 mA (without load)		DC 5 V ±0.25 V/< 130 mA
* Please select when ordering ¹⁾ At the o	corresponding cutoff or	scanning frequency	

IT 2571 □ 1 11L IT 2581 ~ 1 VPP	MT 1287 \sim 1 V _{PP}	MT 2587 \sim 1 V _{PP}
oject	Pneumatic Retracted	

on Zerodur glass ceramic; grating period: 4 μm

.04 µm	0.03 µm	0.04 µm
top		
5 mm	12 mm	25 mm
	0.9 bar to 1.4 bar	
ermissible)		

spring and with low gauging force: vertically downward

2-	-6)
S	27

3-2-27)

ce temperature: 20 °C

	IP67 (with sealing air)	
80 g	110 g	190 g

0.23 μs 0.48 μs 0.98 μs	-
D-sub connector	Cable 1.5 m with • 15-pin D-sub connector (male) • 12-pin M23 connector (male)
IN cable	
(without load)	DC 5 V ±0.25 V/< 130 mA

HEIDENHAIN-METRO

Incremental length gauges with ±0.5 μm/±1 μm accuracy
Large measuring ranges
Plunger actuation by motor or coupling
Ball-bush guided plunger

MT 60M

MT 101 M

Mechanical data	MT 60M	МТ
Plunger actuation	Via motor	
Measuring standard	DIADUR grating on s	ilica
System accuracy	±0.5 μm	±1
Position error per signal period	≤ ±0.1 µm	
Reference mark	≈ 1.7 mm from top	≈ 1
Measuring range	60 mm	100
Radial force mechanically permissible	≤ 0.5 N	≤ 2
Fastening	Plane surface	
Operating orientation	Any	Ver wit Ho SG
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN 60068-2 \leq 1000 m/s ² (EN 60068-2	
Operating temperature	10 °C to 40 °C; reference	
Protection EN 60529	IP50	
Mass without cable	700 g	140

Electrical data	MT 60M	MT 101 M	MT 60K	MT 101 K
Interface	~ 11 μApp			
Signal period	10 μm			
Measuring velocity	≤ 18 m/min	≤ 60 m/min	≤ 18 m/min	≤ 60 m/min
Electrical connection*	Cable, 1.5 m, with 15-pin D-sub connector (male) or with 9-pin M23 connector (male)			
Cable length	≤ 30 m with HEIDENHAIN cable			
Supply voltage	DC 5 V ±0.25 V			
Current consumption	< 120 mA < 70 mA			

Required accessories*	For MT 60 M	For MT 101 M
Switch box	SG 60M	<i>Vertical orientation:</i> SG 101 V <i>Horizontal orientation:</i> SG 101 H
Power adapter	-	Required (see Accessories)
* Please select when ordering		

* Please select when ordering

IT 101 M	MT 60K	MT 101 K
	Via coupling with mov	ving machine part
a glass; grating perio	d: 10 µm	
1 µm	±0.5 μm	±1 µm
10 mm from top	\approx 1.7 mm from top	\approx 10 mm from top
)0 mm	60 mm	100 mm
2 N	≤ 0.5 N	≤ 2 N
ertically downward ith SG 101V orizontal with G 101 H	Any	
2-6) 2-27)		
e temperature: 20 °C	2	
100 g	600 g	1200 g

HEIDENHAIN-SPECTO

Incremental length gauges with ±1 µm accuracy • Very compact dimensions

- Protection rating of up to IP67
- Especially durable ball-bush guide

=	Reference	mark	position
	Paginning	of mo	oouring l

- 🕀 = Clamping area 1 = Air connection for 2 mm tube

,02

13.8±0.4

Υ

H2

ST 12xx: 111.6±1.2 **ST 30xx:** 170.9±1.1

Mechanical data	ST 1278	- 1	ST ST	
Plunger actuation Position of plunger at rest	Via measured ob Extended	Via measured object Extended		
Measuring standard	DIADUR grating	on gl	ass;	
System accuracy	±1 µm			
Position error per signal period	≤ ±0.2 µm	≤ ±0.2 µm		
Short-range accuracy typically	0.3 µm	0.3 µm		
Reference mark	≈ 5 mm below u	≈ 5 mm below upper sto		
Measuring range	12 mm	12 mm 3		
Working pressure	-	-		
Radial force	≤ 0.8 N (mechan	\leq 0.8 N (mechanically pe		
Fastening	Clamping shank	Clamping shank Ø 8h6		
Operating orientation	Any	Any		
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN \leq 1000 m/s ² (EN	\leq 100 m/s ² (EN 60068-2- \leq 1000 m/s ² (EN 60068-2-		
Operating temperature	10 °C to 40 °C; r	10 °C to 40 °C; reference		
Protection EN 60529	IP67/IP64	IP67/IP64 IF		
Mass without cable	40 g		50	

Electrical data	ST 127x ST 307x		ST 128x ST 308x
Interface			\sim 1 V _{PP}
Integrated interpolation*	5-fold	10-fold	-
Signal period	4 µm	2 µm	20 µm
Edge separation a at scanning frequency*/traverse speed100 kHz \leq 72 m/min50 kHz \leq 60 m/min25 kHz \leq 30 m/min	≥ 0.48 μs ≥ 0.98 μs ≥ 1.98 μs	≥ 0.23 µs ≥ 0.48 µs ≥ 0.98 µs	_
Electrical connection*	Cable 1.5 m with 15-pin D-sub connector (male, integrated interface electronics)		Cable 1.5 m with • 15-pin D-sub connector (male) • 12-pin M23 connector (male)
Cable outlet*	Axial or radial		
Cable length	≤ 30 m with HEIDENHAIN cable		
Supply voltage	DC 5 V ±0.5 V		
Current consumption	< 100 mA (without lo	ad)	< 55 mA
* Please select when ordering	¹⁾ Mechanically limite	ed ²⁾ At a co	rresponding cutoff or scanning frequency

T 3078 □ UTTL T 3088 ~ 1 V _{PP}	ST 1277 □ □ □ □ □ ST 1287 ∼ 1 V _{PP}	ST 3077 TLI TTL ST 3087 ~ 1 V _{PP}
	Pneumatic Retracted	
s; grating period: 20	μm	
q		
) mm	12 mm	30 mm
	0.8 bar to 2.5 bar	
rmissible)		
2-6) 2-27)		
e temperature: 20 °C	2	
64		
) g	40 g	50 g

Length gauges with low measuring forces

Incremental length gauges • Ball-bush guided plunger

• Same specifications as for standard products

ST 12

mm Tolerancing ISO 8015 ISO 2768 - m H ≤ 6 mm: ±0.2 mm

® = Reference mark position = Beginning of measuring length

MT 1287

22.0

6.2

4.2

Mechanical data	MT 1281
Plunger actuation	Via cable or measured obj
Measuring standard	DIADUR phase grating on ceramic; grating period: 4
System accuracy	±0.2 µm
Short-range accuracy typically	0.03 µm
Measuring range	12 mm
Fastening	Clamping shank Ø 8h6
Protection EN 60529	IP50
Interface	~ 1 V _{PP}
Signal period	2 µm

	Version	Gauging force	Operating orienta
MT 1281	Default	0.75 N ¹⁾	Any desired operat
	MR	0.25 N ¹⁾	Vertically downward
	MW	0 N ¹⁾	Vertically downward
	MG	0.13 N ²⁾	Vertically downward
ST 1288	Default	0.65 N ¹⁾	Any desired operat
	MR	0.4 N ¹⁾	Any desired operat
	MG	0.2 N ²⁾	Vertically downware

¹⁾ With nearly fully extended plunger

²⁾ Over the entire measuring range

	ST 1288
bject	Via measured object
on Zerodur glass 4 μm	DIADUR grating on glass; grating period: 20 μm
	±1 µm
	0.3 µm
	IP50
	20 µm

Horizontal operating

ST 1288 extending

ST 1288 MR retracting

MT 1281 MR extending

MT 1281 MR retracting Vertical downward

MT 1281 MW extending

MT 1281 MW retracting

ation

ating orientation

rd and horizontal

rd

rd

ating orientation

ating orientation

rd

The diagram applies for the **horizontal** operating orientation, except for MT 1281 MW. For compensation values for other orientations, see the table on p. 20.

Accessories Measuring contacts

Switch boxes, coupling

Ball-type contact Steel ID 202504-01 Carbide ID 202504-02 Ruby ID 202504-03

ID 229232-01

ID 270922-01

ID 202506-01

Flat contact

Steel

Carbide

Pin-type contact

Steel

Knife-edge contact

Domed contact

Carbide

Steel

ID 202505-01

ID 202503-01

Roller contact, steel For a low-friction contact with moving surfaces

Crowned	ID 202502-03
Cylindrical	ID 202502-04

Adjustable contact, carbide For exact parallel alignment to the measuring plate surface

Tolerancing ISO 8015

ISO 2768 - m H ≤ 6 mm: ±0.2 mm

mm E-]©

 Flat
 ID 202507-01

 Knife-edged
 ID 202508-01

Switch boxes for CT 2501, CT 6001, MT 60 M, MT 101 M

Switch boxes are required for length gauges with motorized plunger actuation. The plunger is controlled through two push buttons or by external signal. The SG 25 M and SG 60 M switch boxes can adjust the gauging force in three stages.

SG 25 M ID 317436-01

SG 60M ID 317436-02

SG 101V¹⁾

For the MT 101 M in vertical operation ID 361140-01

SG 101 H¹⁾ For the MT 101 M in horizontal operation ID 361140-02

Connector (female), 3-pin For external operation of the switch box ID 340646-05

¹⁾ Separate power adapter required

Power adapter for SG 101 V/H

An adapter connected to the switch box powers the MT 101 M.

Voltage range: AC 100 V to 240 V Exchangeable plug adapter (European and U.S. connectors included in delivery)

ID 312426-13

Coupling

For connecting the plunger of the length gauge (specifically for the MT 60K, MT 101 K, CT 2502, and CT 6002) to a moving machine element

ID 206310-01

34

35

Accessories for HEIDENHAIN-CERTO Gauge stand

CS 200 gauge stand Ø 58 CT 2501* For length gauges CT 6001 ID 221310-01 350 mm Overall height Ø 250 mm Measuring table Ø 58 mm □ 0.001 /Ø 230 □ 0.0006 / Ø 180 Column 517 15 kg Mass ⊥ 0.01 * With special holder 8 The flatness of the CS 200 is determined with the aid of a Fizeau interferometer. 10 Ø 253±2 71 41.5 0

Holder for CS 200 For the CT 2501 with \emptyset 16 mm clamping shank

ID 324391-01

XXXX No chips or flaws

Ceramic suction plate, diaphragm pump

Ceramic suction plate

Wear-resistant working surface with high surface quality specifically for inspecting gauge blocks

ID 223100-01

The gauge block (class 1 or 2)—or any other object with a plane surface—is drawn by suction onto the top of the ceramic plate. The ceramic plate is likewise drawn to the granite base and held in place through negative pressure.

Parts for connecting the ceramic suction plate with the diaphragm pump are among the items supplied:

Pressure tubing: 3 m T-joint Connecting piece

Powe Mass Line ID 7

ID 754220-02

Diaphragm pump

Line voltage

Source of suction for drawing the measured object and ceramic suction plate

ver consumption ss voltage 54220-01	20 W 2.3 kg AC 230 V / 50 Hz	

AC 115 V / 60 Hz

mm Tolerancing ISO 8015 ISO 2768 - m H ≤ 6 mm: ±0.2 mm

Accessories for HEIDENHAIN-ACANTO, HEIDENHAIN-METRO, and HEIDENHAIN-SPECTO Cable release and gauge stands

Cable release

For manual plunger actuation on the MT 1200 and MT 2500. Built-in pneumatic damping reduces the plunger extension speed to prevent bouncing (e.g., on very hard materials)

ID 257790-01

0.002 / Ø 230

8

<u>[</u>]

L 0.015

Ø 250+3

71

Ø 58

517

MS 45 gauge stand	ł
For length gauges	AT
	ST
	MT

MT 1200 MT 2500

ID 202162-02

Overall height	196.5 mm
Measuring table	Ø 49 mm
Column	Ø 22 mm
Mass	2.2 kg

MS 100 gauge stand AT For length gauges ST MT 1200 MT 2500

MT 60 M¹ MT 101 M¹

ID 202164-02

Overall height	385 mm
Measuring table	98 mm x 11
Column	Ø 50 mm
Mass	18 kg

¹⁾ With special holder

Holder for MS 100

For mounting the MT 60 M ID 207479-01

For mounting the MT 101 M ID 206260-01

mm \Box Tolerancing ISO 8015 ISO 2768 - m H ≤ 6 mm: ±0.2 mm

MS 200 gauge stand AT¹⁾ For length gauges

ST¹⁾ MT 1200¹⁾ MT 2500¹ MT 60 M MT 101 M

ID 244154-01

Total height 346 mm Ø 250 mm Base Ø 58 mm Column Mass 18 kg

¹⁾ With special holder

Holder for the MS 200

For mounting the length gauge with a clamping shaft (Ø 8 mm), including the AT, ST, MT 1200, and MT 2500

ID 324391-02

mm Tolerancing ISO 8015 ISO 2768 - m H ≤ 6 mm: ±0.2 mm

Clamping sleeve and clamping bush

For all length gauges with a Ø 8 mm clamping shaft, including the AT, ST, MT 1200, and MT 2500, for secure attachment of the length gauge without overburdening the 8h6 clamping shank:

Clamping sleeve with screw ID 386811-01 (qty. 1) ID 386811-02 (qty. 10)

Clamping bush with screw ID 1177968-02 Additional protection from damage to the ball guide, as well as a wide tolerance range for the tightening torque

1 0.05

M6

Signal converters

The signal converters from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders or when additional interpolation of the signals is necessary.

Input signals of the interface electronics Box design

HEIDENHAIN signal converters can be connected to encoders with 1 V_{PP} sinusoidal signals (voltage signals) or 11 μ A_{PP} sinusoidal signals (current signals). Encoders with the EnDat or SSI serial interface can be connected to various signal converters as well.

Output signals of the signal converters

The signal converters are available with the following interface to the subsequent electronics.

- TTL square-wave pulse trains
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc Serial Interface
- Mitsubishi high speed interface
- Yaskawa Serial Interface
- Profibus
- Profinet

Interpolation of the sinusoidal input signals

In addition to performing signal conversion, the signal converters also interpolate the sinusoidal encoder signals. This permits finer measuring steps, resulting in higher control quality and superior positioning behavior.

Generation of a position value

Various signal converters feature an integrated counter function. Starting from the last set reference point, an absolute position value is generated and output to the subsequent electronics when the reference mark is crossed.

Version for integration

Top-hat rail design

Outputs		Inputs		Design – Protection class	Interpolation ¹⁾ or subdivision	Model
Interface	Qty.	Interface	Qty.		500010151011	
	1	~ 1 V _{PP}	1	Box design – IP65	5/10-fold	IBV 101
					20/25/50/100-fold	IBV 102
					Without interpolation	IBV 600
					25/50/100/200/400-fold	IBV 660 E
				Plug design – IP40	5/10/20/25/50/100-fold	APE 371
				Version for integration –	5/10-fold	IDP 181
				IP00	20/25/50/100-fold	IDP 182
		√ 11 μA _{PP}	1	Box design – IP65	5/10-fold	EXE 101
					20/25/50/100-fold	EXE 102
			Version for integration – IP00	5-fold	IDP 101	
□/ ~ 1 V _{PP}	2	∼ 1 V _{PP}	1	Box design – IP65	2-fold	IBV 6072
Adjustable					5/10-fold	IBV 6172
					5/10-fold and 20/25/50/100- fold	IBV 6272
EnDat 2.2	1	I 🔨 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192
				Plug design – IP40	≤ 16384-fold subdivision	EIB 392
		2	Box design – IP65	≤ 16384-fold subdivision	EIB 1512	
DRIVE-CLiQ	1	EnDat 2.2	1	Box design – IP65	-	EIB 2391
Fanuc Serial 1 Interface	1	~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 F
				Plug design – IP40	≤ 16384-fold subdivision	EIB 392 F
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592
Mitsubishi high		~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192
speed interface				Plug design – IP40	≤ 16384-fold subdivision	EIB 3921
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592
Yaskawa Serial Interface	1	EnDat 2.2 ²⁾	1	Plug design – IP40	-	EIB 3391
PROFIBUS-DP	1	EnDat 2.1; EnDat 2.2	1	Top-hat rail design	-	PROFIBI Gateway

¹⁾Switchable

²⁾ Only LIC 4100, measuring step 5 nm; LIC 2100, measuring step 50 nm and 100 nm

Calibration according to DAkkS

Related documents

The ISO 9001 quality management standard requires quality-relevant inspection equipment to be regularly monitored and traceable to a national standard in concordance with the International System of Units (SI). HEIDENHAIN supports its customers in this with its own calibration lab for digital linear and angle encoders, which has been accredited since 1994.

The HEIDENHAIN calibration lab

operates in accordance with DIN EN ISO/ IEC 17025 and is accredited by the German Accreditation Body (DAkkS). HEIDENHAIN calibration certificates granted by the accredited lab document traceability to the International System of Units (SI).

The DAkkS is a signatory to the multilateral agreement of the European co-operation for Accreditation (EA) and to the International Laboratory Accreditation Cooperation (ILAC) for the mutual recognition of calibration certificates. Calibration certificates from HEIDENHAIN are recognized in most industrialized countries.

The calibration certificate from HEIDENHAIN gives the user certainty about the accuracy of the encoder, and also certifies the traceability to the International System of Units (SI) required for ISO 9001.

The calibration lab at HEIDENHAIN is equipped for all **digital linear and angle** measuring systems requiring high accuracy:

- AT, CT, MT, and ST length gauges (including in conjunction with ND 28x, EXE, or IBV subsequent electronics)
- LC, LF, LIDA, LIP, and LS linear encoders • ECN, ROC, ROD, and RON angle encoders

Length gauges from HEIDENHAIN can be calibrated regardless of their interface. If the measuring chain includes subsequent electronics from HEIDENHAIN, then they can be included in the calibration as well.

The following information can be measured and certified:

- Error span for plunger retraction
- Error span for a part of the measuring span Repeatability with five measurements (extended plunger)

Deutsche Akkreditierungsstelle D-K-19057-01-00

Excerpt from a sample calibration certificate

	NHAIN	DrJohannes-Heidenhain 83301 Traunreut, Germa Tel +49 8669 31-1157 FAX +49 8669 32-1157				
akkreditiert durch d	lie / accredited	l by the				
Deutsche Ak	reditieru	ngsstelle Gm	bH 🛛 🗰 🌔 DAk	kS		
als Kalibrierlaborato	rium im / as ca	libration laboratory i	n the	D-6 19057-01-00		
Deutschen Ka	librierdie	nst 🗾		000000		
Kalibrierschein Colibration certificate			Kalibrierzeichen Calibration mark	D-K- 19057-01-0 2013-02		
Gegenstand Object Hersteller Manafacturer	Inkrementales L HEIDENHAIN	ängenmessgerät	Dieser Kallbrierschein dokume führung auf nationale Normali der Einheiten in Übereinstim Internationalen Einheitensysten Die DAkkS ist Unterreichner d Übereinkommen der European Accreditation (EA) und der Inter	e zur Darstellu mung mit de n (SI). er multilaterale co-operation f mational Labor		
Тур Туре	MT 2581		tory Accreditation Cooperatio genseitigen Anerkennung der K Für die Einhaltung einer angem Wiederholung der Kalibrierung	alibrierscheine essenen Frist a		
Fabrikat/Serien-Nr. Seriol number	8547396A		verantwortlich. This calibration certificate traceability to national standar	documents t ds, which real		
Auftraggeber Customer		HEIDENHAIN GmbH eidenhain-Straße S	International System of Units (5 The DAkkS is signatory to agreements of the European	the units of measurement according to th International System of Units (SI). The DAIXS is signatory to the multilater agreements of the European co-operation fo		
Auftragsnummer Order No.	00001 Hadined	intern	Accreditation (EA) and of the Laboratory Accreditation Cooper the mutual recognition of call tes.	ration (ILAC) j		
Anzahl der Seiten des Ka Number of poges of the certific		4	The user is obliged to have t brated at appropriate intervals.			
Datum der Kalibrierung Dote of colibrotion		2013-02-20				
sowohl der Deutschen Akkred keine Gültigkeit.	itierungsstelle GmbH	als auch des ausstellenden Ka	rden. Auszüge oder Änderungen bestürfen i Ibrierlaboratoriums. Kalibrierscheine ohne U e permission of both the Deutsche Akkreditie	interschrift habo		
and the issuing laboratory. Cal Datum Date	Ibration certificates wh Leiter des Kalibrierla Head of the calibrat	boratoriums	Bearbeiter Person in chorpe			
LATE		y. du.	2			
2013-02-20	Gerald Metz		Gerald Metz			

Related to length gauges

Brochure

Contents:

and cable lists

Technical characteristics, cable overviews,

Cables and Connectors

For Metrology Applications

ND, GAGE-CHEK, EIB, IK

Further HEIDENHAIN products

Brochures TNC 128 Straight-Cut Control TNC 320 Contouring Control iTNC 530 Contouring Control TNC 620 Contouring Control TNC 640 Contouring Control

Contents: Information for the user

Brochure **Encoders for Servo Drives**

Contents: Rotary encoders Angle encoders Linear encoders

Brochure Angle Encoder Modules

Contents: Angle encoder modules MRP2000, MRP5000, MRP8000 Angle encoder modules with integrated torque motor SRP5000, AccurET

42

Brochure Interfaces of HEIDENHAIN Encoders

Contents: Information on serial interfaces, sinusoidal signals, square-wave signals, and commutation signals

Brochure Digital Readouts/Linear Encoders For Manually Operated Machine Tools

Contents: Digital readouts ND, POSITIP Linear encoders LS

Brochures MANUALplus 620 Contouring Control CNC PILOT 640 Contouring Control

Contents: Information for the user

Brochure Angle Encoders with Integral Bearing

Contents: Absolute angle encoders RCN, ECN Incremental angle encoders RON, RPN, ROD

Brochure Modular Angle Encoders with Optical Scanning

Contents: Incremental angle encoders ERP, ERO, ERA

Brochure Measuring Devices For Machine Tool Inspection and Acceptance Testing

Contents: Incremental linear encoders KGM, VM

HEIDENHAIN

www.heidenhain.com

208945-2K · 5 · 05/2021 · H · Printed in Germany

HEIDENHAIN worldwide